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It is shown that an implicit E field can be obtained from Poisson’s equation with the aid of 
the lower two fluid moment equations, permitting stable particle simulations for w,At % 1 and 
Ax/&, + 1, where cup and 2, are the plasma frequency and Debye length, respectively. In the 
quasi-neutral limit the effect of this E is to provide just the predicted current required to drive 
all present deviations in the total charge density to zero in the next cycle. In near vacuum, or 
with co& 9 I, the field expression reduces to the standard form used with conventional leap- 
frog schemes. Sample applications are discussed. 

1. INTRODUCTION 

For efficient simulations of plasmas there is often a need to calculate the dominant 
evolving hydrodynamic behavior of electrons using a time step At large compared to 
the plasma period, o,At $ 1, with the minimum spatial resolution Ax large compared 
to a Debye length, Ax/L, 9 1. 

This has led to the development of hybrid models [l-3] for situations in which the 
electrons are expected to be isothermal, adiabatic, or nearly Maxwellian. Where more 
detailed information about the electron distribution has been required, the need for 
efficiency has encouraged the invention of time-filtering [4], and orbit-averaging [5] 
techniques. 

These techniques have been supplemented by methods originally developed to 
model the electron transport from laser-target interactions. We have simulated the 
penetration of hot electrons through a cold electron background, where w,At s 1 and 
Ax/3L, + 1 both: (a) explicitly, by means of plasma period dilation (61, and, alter- 
natively, (b) in the quasi-neutral limit, by using the implicit E field calculated from 
the electron momentum equation (7-91. Together (a) and (b) have evolved into the 
Implicit Moment approach recently discussed elsewhere [ 10, 111 and detailed in the 
present paper. More recently, Denavit and Walsh [ 121 have reported the development 
of a similar approach to improve Denavit’s time filtering technique. 

* This work was performed under the auspices of the United States Department of Energy. The U.S. 
Government’s right to retain a nonexclusive royalty-free license in and to the copyright covering this 
paper, for governmental purposes, is acknowledged. 
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2. THE ADVANTAGES OF IMPLICIT E 

Consider a one-dimensional, collisionless plasma consisting of ions and hot and 
cold electron components represented as particles. These are governed by the 
difference equations 

U(m+ l/Z) = U(m- l/Z) + qaE(*’ dt 
ma ’ 

X(m+l) =.p) + U(m+l12)~t, 
(lb) 

where (q,, m,) are (-e, m) for electrons and (Ze, M) for ions, i.e., CI = h, c and i. In 
the conventional explicit leap-frog scheme E’*’ = Ecrn’, and Ecmi-” is computed at the 
beginning of the next cycle from Poisson’s equation 

JE(m+ 1) 

ZJX 
= 4nC q,n~m+“, 

which differences as 

E'm+l'(i+~)-E'm+l'(i-t) =-447Le~n(m+l)-znjm+l)] ,-4ne~n(m+l), (2b) 

Ax e 

in which i is the cell center index, and n, = n, + n,, is the sum of the hot and cold 
electron densities. 

Let E(i - 4) = 0; then Eq. (2b) rearranges to 

E(i + 4) = - (o~,At)~ 
Ax m 

(dt)ze Anlneli 

with CUE = 4ne*n,/m. Suppose we set At so that an electron at the mean thermal hot 
speed u,, > 0 crosses a cell in a single time step, i.e., Ax = v,At. Then the total energy 
change for such an electron in At is AC!? = eA# = - eEAx s eE(i + f) AX/~, or 

A8/(+rnvt) = - (co,, At)’ An/n,. (4) 

With An/n, < 0.25, w,At < 2 can be tolerated. However, with An/n, = O(l), as at 
the coronal edge of a laser pellet, the use of large time steps, w,At 9 1, will expose 
the electrons to fields that are large enough to change the electron mean energy by 
many multiples in one time step, leading to extreme violation of energy conservation 
and rapid divergence of the calculations. 

One can avoid these difficulties at large At by either artificially decreasing the 
plasma frequency, as under “plasma period dilation” [6], or by making all, or part, 
of the E’*’ in Eq. (la) implicit [7-l 11. With I!?*’ - Et”‘+ ‘) the velocities can be 
controlled, so as to limit the particle excursions and, therefore, the accumulated 
density deviations Antmi I). Thus, AC? remains of order rnvi = kT,. 
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3. THE SCHEME 

The value of an implicit approach has been recognized for some time [ 131, but 
implementation has lagged, due to the assumed need for costly iteration of the 
particle trajectories. We skirt this problem, in first approximation: (1) by solving the 
lower fluid moment equations each cycle in conjunction with Poisson’s equation for 
an implicit I?*‘, and then (2) by advancing the particle equation with this predicted 
electric field. 

Equation (la) is first replaced on the average by the particle momentum equations 

-fmi l/2) _ +m- I/2) J, _ J, (54 

Here, j, = n, U,, and ~Ya 3 n,(kT, + m, Vi) is the second moment sum over the 
particles, i.e., m C u2. Equation (lb) is replaced by continuity 

For one-dimensional problems we can integrate the Poisson equation, Eq. (2) 
obtaining 

where the integral is arbitrarily started at x = 0. The tilde on $mt” and Jim+“‘) in 
Eqs. (5) and (6) is notice that these quantities are predictions from the moment 
equations and not necessarily equal to the particle quantities nCmtl’, j(*“‘*) that will 
be established in the next cycle. Thus, I?(mtl’ is the electric field consistent with these 
predictions. 

The simplest and most stable choice for E’*’ is the fully implicit field 
EC*’ - E. = Ecmt ‘). Alternatively, E’*’ = E, = i [EC*+‘) + 2E’“’ + EC”-“I is sym- - I 
metric about (m), offering improved centering, and its levels are weighted, so as to 
smooth the electron accelerations. Thus, to introduce some flexibility, we have 
employed 

E’*‘=BE,+(l-Q)E,, 0<8< 1. (7) 

Using this with Eqs. (5) and Eq. (6), we derive the predicted field 

1 ‘I\’ qann ,: cm’dx-\ q,J, 
-0 7 

o ‘(mp112)At +; zz (At)2] + B(x) + C(0) 

(1 + awb2At2) (8) 
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= I g(x) + C(O)l/f(x)~ in which a G 4 (30 + l), 0;’ 3 4ne*(n, + Z*n,m/M)/m, and 
B(x) = ; (1 - B)[2E’“’ + E’“- ‘)I. 

In Eq. (8), C(0) = ~(“““(0) + 4ne C, I:~+ “” (0) At. At a specular or quiescent 
left boundary j, (0) = E(0) = 0, and, therefore, C(0) = 0. Alternatively, under 
periodic boundary conditions we require that $(O) = @,) - J”h E dx, and, thus, 
C(0) = - J‘; gf - ’ dx/!‘h f - 1 dx. From the particles we accumulate the fluid 
moments n’“‘, j(“- ‘I*‘, and 9(” at the cell centers, but use the averaged values 
j)T;l’*’ = [j’“-“*‘(i) + j”‘-“*‘(i + 1)]/2 and ni:‘,,, = [n’“‘(i) + n’““(i + 1)]/2 in the 
calculations at cell boundaries for &Jti’. This implicit field is then area-weighted to 
the particle positions and used as E’*’ each cycle in Eq. (1) to advance the particle 
coordinates. 

Note that Nielson and Lewis [ 141 first used the fluid momentum equation in a 
particle code application to get a stable estimate for al/at, which is, of course, 
IJ’” + Ii*’ - J(mp”2)]/At. We have extended this notion to get jT’ “*’ and $““’ 
through the integrated difference expressions for the lower fluid moments, leading to 
our implicit solution of the Poisson equation for E”(m+“. 

For stability, when the time step. is constrained to a Courant condition, 
At < Ax/u,, and 6’ is chosen large enough, we have found it sufficient to accumulate 
92’ from the mixed particle data at the end of a time step, i.e., from [xc”“, u(~-“*‘]. 
Stability at larger At and arbitrary 0 has been achieved using the local adiabatic 
approximation, i.e., yLt) = cpbm-l/*) (n,*/n$m-Y*))3, in which ni*) = Znj”) - 
(1/4ne)(aE(*)/ax), and nk”- l’*’ is accumulated at the half-time positions with 
IJy - 10) _ ypl- I/Z) + syl- 112). In this approximation Eq. (8) is solved iteratively 
starting with the values of E’*’ from the previous cycle. 

In the quasi-neutral limit ob*At + 1 with 0 = 1 and for a specular boundary, 
C(0) = 0, when the n:’ and jjln- I’*’ terms are neglected, Eq. (8) reduces to 

pl t 1’ = 4nw’ - 2 \' 4, aL9bt' 
P -3 ymm, ax 

which is equivalent to the result obtained by Hewett and Nielson 13, Eq. (38)], except 
that here 92’ is accumulated from the particles. When the ions are motionless 
(M -+ a’) this reduces to the familiar form 

pm+ I'= - a p$+’ + .F;+)I 
0Pax . (10) 

If we remain in these limits with C(0) = 0, but now include the current terms 
j(“- I’*), Eq. (7) becomes 

pm+ 1) _ 
m [j;m - 42) + ji” “- “*)]/At - a [9:+) + Yi+)]/ax 

- 
entm’ (11) 

e 

This is the collisionless limit of the “moment method” field first derived in Ref. [ 71. It 
follows directly from setting J~~~“~’ + xm+“*’ = 0, and solving Eq. (5a) for 
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EC*’ = i?“’ ‘). If exact quasi-neutrality were achieved with this E every cycle, then 
[jam”- 1/2) + Jo”- l/z)] would be zero, and Eq. (11) would go to Eq. (10). In fact, the 
predicted currents from Eq. (5a) at the end of each cycle will deviate, to some extent, 
from the actual currents that will be accumulated from the particle moments, and, 
thus, the jjlm-“‘) terms in Eq. (11) provide an E field component that acts to correct 
these deviations. 

In Ref. [9] we indicated that, despite its tendency to eliminate error in the currents, 
the Eq. (11) E field allowed an accumulation of charge separation error in steep 
density gradient regions, such as pellet coronas. Plasma period dilation which yields 
less separation in such regions was, therefore, favored. 

However, now, if we also retain the density term Eq. (11) becomes 

E(m+l)- - 

.x 
-j m[ 

Q’ - Zrp] % (i (+) 

0 (At>* 

dx + m [jkmlm-1'2' + j~m-"2'1 
At 

- ax [‘Ph + .$+‘] 

en’“’ 
(12) 

e 

The new term acts to eliminate the charge separation errors. This is evident when we 
note that, by imposing quasi-neutrality on the predicted densities (instead of the 
currents), Eq. (5b), yields 

which integrates for the specular boundary to 

)?rnt I/*) + ,;m+ l/2) = I-1 [nr”’ - Znj”‘] dx/At. (13b) 
*o 

This combines with Eq. (5a) to give the Eq. (12) ,!?“” I). The predicted currents from 
this field are, therefore, just those required to cancel previous density errors. 

Thus, compared to the schemes in Refs. [6-9) for quasi-neutral plasmas, the 
present Implicit Moment approach is superior, by eliminating the charge separation 
errors, while avoiding the uncertainties associated with plasma period dilation. 

More generality, the Eq. (8) field has a variety of desirable properties. In vacuum 
regions, W; -+ 0, the field is determinant and finite, unlike the Eq. (10) result, and 
limits to the usual explicit Poisson values 

~(m+l,+4, .x 

I 
\‘ q, n:“’ dx + I?‘+ “(0). 

-0 
(14) 

This is also true as At + 0, with the Jo!‘-‘/*) term providing a first order correction to 
the usual leap-frog field and, thus, a second order contribution to the particle speeds 
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u(~+I”). The Eq. (8) field can be readily modified, so as to “soften” the effects of the 
correction terms, if desired, by the substitutions 

4x 
I’ 
X\‘q,n~‘dx~P4nj’~1:q=nb”‘dx+(1 -P>[-@“‘--E’“‘(o)l~ (13 
0 a 0 a 

4X c q, jh*-‘/2’At_t y4;rr C q, jLmrnV2'At - (1 - y)[E’“’ -E’“-“1 (I5b) 
(I a 

with the range 8, y = 0 --) 1 for the parameters. Thus far, however, we have found that 
/I = y = 1 give the most physical results. When /I = 0, for example, the density 
correction is lost. This uncorrected limit is established directly, incidentally, should 
we start with Poisson’s equation in its time derivative form, i.e., 
aE/at = - 471 C q, j~mlm”2’, instead of with Eq. (2a). 

In simulations, we have found that the electrons gradually cool with the fully 
implicit, 8 = 1 field, so that the need for improved energy conservation has led us to 
consider the more general Eq. (7) E . (*I Alternate generalizations are, of course. 
possible. For example, E’*’ = 8Ecm+ I) + (1 - 0) E’m’ provides centering with 0 = {, 
when both the velocities and positions for the particles are stored at full times 
[levels - (m)] . However, this second formulation is more expensive computationally 
by requiring that E’*’ be sampled at the extrapolated particle for time (m + 0). 
Similarly, the “time-filtered” centering, EC*’ = i ] 3E(“‘+‘) + Ecm-‘) ] , of Crystal et al. 
[4] and Denavit and Walsh [ 121 could be employed. This requires increased storage 
and extrapolations to sample E (*I, but has the advantage that it applies damping 
preferentially to the highest frequency disturbances. On the other hand, this filtered 
centering always cools in the aggregate, and provides no option to “tune out” the 
damping in instances when energy conservation is required. 

To investigate stability we have employed the linearized fluid equations for eik-’ 
disturbances of adiabatic electrons oscillating in a uniform motionless background, 
where the mean thermal speed is a, = @T/m)“‘, and the density is II, = Zni, i.e., 

auk 3aiik 2 
-=- 

at 
- ii, + wpi 

*0 ikn, k’ 

an,- 
at -- 

ikn, U,, 

(lea) 

in which E, = - 47cen,/ik has been eliminated. The use of Eqs. (16) is equivalent to 
assuming ri, = It,, i? = E, etc. The densities fi, and gk are associated with the pressure 
and E field, respectively. Introducing the time dependencies nzk = noeiw(‘-‘O) and 
U, = U,e iw(f-‘o) we get, for example, ny’ = nOeiwmA’ = no<“‘, with r = e”“*‘, at the 
discrete levals m = (r - tO)/dt. Finally, by giving both fi, and SK time levels 
consistent with Eq. (7), i.e., 
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and using, for example, aU,/at = [U!!“‘+“‘) - U!!m- “2’]/At, we derive the dispersion 
relation 

where 

(~-1)2=-(c2/4)[(l+38)~2+2(1-8)~+(l-8)], 

c2 = (co: + 3ai k’) At2 = c5iAt2. 

(18) 

In the fully implicit, 0 = 1 limit Eq. (18) has the solution r = (1 f ic) ‘, so the 
amplification factor is it] = (1 + c’) I”. Let [ = eiuA’ = e’“oA’e-‘“‘. Then, 
I<1 = e-YAf = l/c = 1/ogt f or c * 1, and y= l/At log(Gdt). The scheme is stable, 
but disturbances decay away in a time T, = l/y = At/log (WJt). Alternatively, in the 
fully centered limit, 8 = 0, r = (1 f k/2)/(1 % k/2), so ]r] = 1 and for arbitrary c 
there is neither damping or growth. Further, when c B 1, r= - 1 so 
e iwA’ = cos w@t = - 1, and w,,At = 2&t/T = x yield oscillations for the disturbances 
at period T = 2At. Next, for arbitrary 0 and c 9 1, Eq. (18) yields 
ItI = [(I - @)/(I + 30)]“‘, which is always <l. Thus, with a small non-zero 6’ it 
should be possible to remove the 2At oscillations, if this is desired. Finally, we note 
that for c s 1 and any 8, C- 1 f ic, so efwAf + 1 + iwdt yields LC) --t f (w, + 3ai k’)“’ 
and plasma oscillations are returned. 

To explore the 0 = 0 case further consider the family of centered choices 

n;, = gk = &+m t 1) + (1 - 26) nCm’ + MrnP I), 6 > 0. (19) 

Used with Eqs. (16) this yields the standard explicit leap-frog scheme for 6 = 0, and 
our implicit centered scheme for 6 = $. From the dispersion relation obtained with 
this family, we find that the amplification factor ]{I is unity for c2 < 4/(1 - 46); for 
larger c, I{] exceeds unity, indicating unstable growth. This verifies that the explicit 
leap-frog scheme is unstable for w$t > 2, as asserted with Eq. (4), while the 6’= 0 
scheme of Eqs. (7) and (17), is stable for any value of w,At. For 6 > a we find that 
with c $ 1 the maximum frequency permitted disturbances is wO= 2/At 
sin-’ [ l/(2@)). At 6 = $ these are oscillations of period T= 2At. With larger 6 they 
would be at progressively lower frequency, implying an unnecessary distortion of the 
dispersion relation. Thus, with 6 = $ we smooth our results by imposing a ceiling on 
the disturbances at the maximum frequency resolvable and consistent with stability. 
Any damping from 04 0 provides additional smoothing. Thus, despite the statistical 
errors associated with the accumulation of the current and pressure fluid moments, in 
simulation we have found that the implicit method gives smoother results than those 
obtained via corresponding explicit leap-frog calculations. It is possible that even 
smoother results at greater computational efficiencies will derive from the use of 
“orbit averaging” (51 in conjunction with the implicit moment method. 

An important consideration is the maximum time step permitted with the implicit 
method. To examine this we use Eq. (17) for Ck but set 

ii, = En;, + (1 - E) n:m’ ) O<E< 1, (20) 
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corresponding to a fully explicit ,Ya (+) when E = 0. Then, for a fully implicit field, but 
an explicit pressure (0 = 1, E = 0), when c 4 1, the largest root of the dispersion 
relation is <= ka,/o, N &,/Ax. Since for applications of interest Ax + A,, ItI is 
always less than unity. Thus, theoretically any At should be permitted. This limit is 
an exception, however, and is, in fact, not observed in simulation. For smaller 19, At 
must be bounded for stability, and when ~9 = 0, there should be unstable growth 
unless a,, = 0. These results are unchanged if ti, = nim”-“, and should, therefore, 
apply for our mixed-level 9bf). Indeed, in simulation we observe a gradual heating 
when 0= 0. In practice, with explicit ,Ya J (+) the heating has been eliminated, by 
keeping At < Ax/v,, and tuning 13 to an appropriate value. Thus, for the sample 
applications which follow, pressure was explicit and 8 = 0.38 was found to be 
optimal so that, for example, in the two-stream, w$t = 0.4, problem, which we will 
describe, energy was conserved to within 1% over 3000 cycles. 

Brackbill (see [ 151) first alerted us to the time step limitation imposed by the 
pressure gradient terms in Eq. (5a), suggesting that the use of 9:’ = a,, = 0 would 
allow arbitrary At. Our computational experience confirms this for 0 = 1. We find, 
however, that our local adiabatic approximation for the pressures gives equal stability 
with superior energy conservation and precision, e.g., two-stream eddies, damped at 
large At when 9:” is set to zero, remain preserved under the local adiabatic approx- 
imation. Of course, for accuracy At must still be small enough so that field structures 
of interest are sampled several times during the transit of a typical particle. 
Presumably, the local adiabatic approximation can be generalized, by getting 
9(+) = .Pi*) not from ~9:+’ - ni but from the implicit solution to the next higher, 
en;rgy moment equation under the assumption of a zero third moment, 
q, = Z (u - U,)3 = 0. Alternatively, here, one might choose to use qk” = q~m,m-1’2’. 

Finally, we recall that ideally, the tilde densities and currents predicted with 
Eq. (5) should agree with the particle properties accumulated in the next step, i.e., 
Ym+ 112) J *(In + l/2) +J ) p+l'+ n'"+l' . Then in the quasi-neutral limit, for example, the 

correction terms e.g., C q,jkmm “2), are actually zero, and improved energy conser- 
vation can be anticipated. Improvements correcting for the differences between the 
fluid and finite particle descriptions are, therefore, desirable. These may include 
iterating on E and the particle equations, using the Eq. (8) field as a first guess. 

4. SAMPLE APPLICATIONS 

A. One- and Two-Temperature Expansions 
As an example, we have looked at the one-dimensional expansion of collisionless 

plasma into a vacuum. The simulations package is more generally used to study 
laser-plasma interactions, so the input and output are dimensional with time in 
picoseconds and distance in microns. Wet set Zni = n, = 5 x 102’ cmp3 initially, and 
n, = 0 with T,, = 10 keV and Ti = 1 keV. We used 100 cells at Ax = 0.5 pm and 
At = lop3 psec. Here vh = 42.4 pm/psec so that the Courant condition on the 
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x (pm) 

FIG. I. n, and Zn, curves for the expansion of a 2 = 10, A = 25 plasma with T,/T, = IO. Evolution 
to w,,Ar = 1.2 x lo4 with w,dl= 4, ,4x/A, = 47.8. 

electrons actually permits a time step at least five times larger. This has been subse- 
quently tried and gives nearly identical results. 

This calculation ran 3000 cycles with Z = 10, A = M/Mp = 100, where M, is the 
mass of a proton, here reduced to speed the calculations. We employed only 2 x IO3 
particle-electrons and an equal number of ion particles. Before submission as sources 
into the Eq. (7) field expression, the density, current and pressure moments were 
smoothed b$ passing them through the operator O(A) = a [A(i + 1) + 
2A(i) + A(i - l)]. This was done four times each cycle. The results are essentially 
unaltered (but noisier), when this smoothing is omitted. In the dense, unexpanded 
plasma or = 471 X IO3 psec-‘, so Ax/&, = 47.8 and wr,At = 4.0. The ion acoustic 
speed V1.a. = (ZT,/M)“* = 2.7 pm/psec. The boundaries are specular. 

l-l IO= I 

(cm3) 102*- 06 PS 

Id’ - 

------------. 
IO”- nd 

lOi9 - 

0 25 50 0 25 50 

x&J-d x(p) 

FIG. 2. Two-temperature electron driven expansion: T,,/T, = 3.3. and T,,/T, = 10.0. 
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Figure 1 gives the results of the calculation. The vertical fiducial lines mark the 
distance traveled in 3 psec by a particle moving at the ion-acoustic speed. Each curve 
is actually two overlaid curves-one for n, and one for Zn,-but the Eq. (7) field, 
here in its quasi-neutral limit, locks them into superposition. Incidently, T,, remains 
nearly isothermal over the run. 

For the Fig. 2 sequence, we have reduced the hot density to 5% of the total, 
n,, = 2.5 x 10” cm-3. We set the main body of cold electrons at T, = 3 keV and 
Ti = 3 keV. We used lo3 cold electron particles and lo3 hot particles; so the 
resolution of. the electron distribution “tail” was increased, at least, lo-fold. 
Otherwise, the parameters were unchanged. Upon expansion the hot electrons rapidly 
fill the low density “coronal” region, which is followed by the slower expansion of the 
plasma main-body. Eventually, the fastest ions are reflected off the right 
computational boundary at x = 50 pm. 

B. Two-Beam Instability 

For a second test we have applied the implicit method to the two-beam problem in 
a warm plasma. The beam drift speeds ud were f 25 pm/psec, respectively, and the 
beam temperatures were 0.43 keV, so that their mean thermal speeds 
vh = (T/m)“* = 8.8 pm/psec and, thus, up = flu,, = 12.5 pm/psec, giving / vd I= 2v,. 
We used lo4 simulation particles in each beam, 100 cells, and, of course, periodic 
boundary conditions. The total density, i.e., from both beams, was n, = 10” cmP3, so 
that w;’ = 5.61 x lop4 psec and A, = vh/wP = 4.87 X lo-’ cm. The ions were 
stationary (M-, co). 

In our first. calibrational run At = 2.24 x lop4 psec = 0.4 w; ’ and Ax = 2.43 X 

10e6 cm = 5.0 A,. This was, therefore, equivalent to Case V, in Ref. [ 161 by Morse 
and Nielson, except that our time step was 2.5 times larger, and our cell size was five 
times larger. Frame (a) of Fig. 3 shows the starting conditions. The particles were 

(0) T=n (b) r=40 (cl I-= 190 

75 20 S=4C 

I 
24? 

, 75 75 (f 1 rT=19000 
~-~ 

-75 I 1 I J / ’ 0 12 I 243 12 I 243 -750Lw 243 

x(pm) x (pm) x (pm) 

FIG. 3. Two-beam instability in a warm plasma calculated with: (a)--(c) w&t = 0.4, (d)-(e) 
w,dt = 4.0, and (f) w,dt = 40.0. 
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loaded at cell centers. Frame (b) shows the development at 40 plasma periods, i.e., 
r = t/T = upt/2n. = 40, w,t = 251, after 620 cycles. The coalescing eddies of 
Ref. [ 161 are very much in evidence. We see four or five eddies over the 500 1, test 
area. as did Morse and Nielson for comparable times. Of course, slightly different 
initial conditions, and our large At and Ax, should alter the details. Frame (c) shows 
the results when we let the calculation continue to r = 190, cycle 3000. Smearing and 
coalescence of the eddies have reduced their number to 1. 

Figure 3 frames (d) and (e) show the results of running the calculation with 
w$t = 4.0, and Ax/,i, = 50.0. After 62 cycles we get frame (d), t = 40, which shows 
approximately three or four eddies in the right 10 % of the test area, in agreement 
with frame (b). The two horizontal curves through the beams are the mean currents, 
e.g.. jh = nh ch. By r = 400 (100 cycles) we obtain frame (e), which is comparable to 
(c). It exhibits about 12 eddies over the full 5000 1, test area. As a general rule, we 
have found that instability sets in later, as we increase o,At, but that comparable 
turbulent states, as limited by the reduced resolution at larger Ax, are achieved at 
large times. Frame (f), for example, is the result obtained after 3000 cycles with 
topAt = 40 and Ax/l, = 500 at time r = 19,000. The left 10% of frame (f) is equivant 
to the frame (e) result run 100 times longer. This would, incidentally, correspond to a 
67.psec interval and a 243;um test area, consistent with the corona of a laser pellet. 

These two-stream results must be viewed with caution. For cold beams the 
maximum growth should occur near k = o,/]vd] = 7.1 X 10’ cm- ‘, at a rate near 
1 yl = w,/2. Assuming the smallest rate resolvable is Lmin = 2Ax, we get 
k max = 12.9 x 105, 1.79 x 105, and 0.129 X lo5 cm-’ for the three cases considered. 
So only in the first case is 1 ylAt < 1, and only in this case is the fastest growing mode 
resolved. In the remaining cases the scheme will attribute the beam coupling to more 
slowly growing modes. Similarly, non-linear trapping of the electrons is characterized 
by a rate w, = (e$/kT) I” k 1, cop. At T = 40 when four eddies are visible in Fig. 3b 
we find that e4 = 8 keV at the eddy peaks, while the background has heated to 
kT = 2 keV. The length of the eddies is roughly L=SAx= 
401, (T= 0.43 keV) = 18.6 Lo (T= 2 keV), so k = 27t/L = 0.34/&. Thus, 
cot = (8/2)“* 0.34 cop = 0.68 up. For our three cases w,,At = 0.4, 4.0, and 40.0, 
therefore, we see w,At = 0.27, and 27.0. Only our first case has a reliable At < wt ‘, 
although At < T, = 27~~;’ may be sufficient, since our wdt = 4.0 run crudely 
reproduces the wJt = 0.4 structure. The crucial point here is that even our 
calculations for 1 ylAt + 1, k,,, Ax 9 1 and opt $ 1 are stable and physically 
plausible. If greater detail in the evolving structure is desired, smaller time and space 
steps are still required, 

5. CONCLUDING COMMENTS 

We have demonstrated that the Implicit Moment approach can give stable, 
physically acceptable results for plasma simulations in which w,At > 2 may be 
required for economy. The use of (w,$t)(Ax/l,) = (4)(47.8) = 191.2 for our Fig. I 
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study implies, for example, an 0(200)-fold speedup over conventional methods. The 
limits of accuracy of the implicit simulations need, however, to be explored, and the 
optimal tuning (through a and p, for example) and centering (as with Eq. (7)) must 
be defined. Even greater efftciencies may be envisioned with each particle advanced 
according to its own time step, and the fields calculated on the time scale over which 
they change appreciably. Additions including classical collisional effects, as initiated 
in Refs. [6--91, are needed for cold, high density laser pellet applications, and 
extension of the implicit approach to two dimensions, including B fields, offers, we 
think, a manageable and attractive challenge. 
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